Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Advanced Linear Algebra (MA 409)
 Problem Sheet - 14

Systems of Linear Equations - Computational Aspects

1. Label the following statements as true or false.
(a) If $\left(A^{\prime} \mid b^{\prime}\right)$ is obtained from $(A \mid b)$ by a finite sequence of elementary column operations, then the systems $A x=b$ and $A^{\prime} x=b^{\prime}$ are equivalent.
(b) If $\left(A^{\prime} \mid b^{\prime}\right)$ is obtained from $(A \mid b)$ by a finite sequence of elementary row operations, then the systems $A x=b$ and $A^{\prime} x=b^{\prime}$ are equivalent.
(c) If A is an $n \times n$ matrix with rank n, then the reduced row echelon form of A is I_{n}.
(d) Any matrix can be put in reduced row echelon form by means of a finite sequence of elementary row operations.
(e) If $(A \mid b)$ is in reduced row echelon form, then the system $A x=b$ is consistent.
(f) Let $A x=b$ be a system of m linear equations in n unknowns for which the augmented matrix is in reduced row echelon form. If this system is consistent, then the dimension of the solution set of $A x=0$ is $n-r$, where r equals the number of nonzero rows in A.
(g) If a matrix A is transformed by elementary row operations into a matrix A^{\prime} in reduced row echelon form, then the number of nonzero rows in A^{\prime} equals the rank of A.
2. Use Gaussian elimination to solve the following systems of linear equations.
a) $x_{1}+2 x_{2}-x_{3}=-1$
$2 x_{1}+2 x_{2}+x_{3}=1$
$3 x_{1}+5 x_{2}-2 x_{3}=-1$
b) $x_{1}-2 x_{2}-x_{3}=1$
$2 x_{1}-3 x_{2}+x_{3}=6$
$3 x_{1}-5 x_{2}=7$
$x_{1}+5 x_{3}=9$
c) $x_{1}+2 x_{2}+2 x_{4}=6$
$3 x_{1}+5 x_{2}-x_{3}+6 x_{4}=17$
$2 x_{1}+4 x_{2}+x_{3}+2 x_{4}=12$
$2 x_{1}-7 x_{3}+11 x_{4}=7$
d) $x_{1}-x_{2}-2 x_{3}+3 x_{4}=-7$
$2 x_{1}-x_{2}+6 x_{3}+6 x_{4}=-2$
$-2 x_{1}+x_{2}-4 x_{3}-3 x_{4}=0$
$3 x_{1}-2 x_{2}+9 x_{3}+10 x_{4}=-5$
e) $x_{1}-4 x_{2}-x_{3}+x_{4}=3$
$2 x_{1}-8 x_{2}+x_{3}-4 x_{4}=9$
$-x_{1}+4 x_{2}-2 x_{3}+5 x_{4}=-6$
f) $x_{1}+2 x_{2}-x_{3}+3 x_{4}=2$ $2 x_{1}+4 x_{2}-x_{3}+6 x_{4}=5$ $x_{2}+2 x_{4}=3$
g) $2 x_{1}-2 x_{2}-x_{3}+6 x_{4}-2 x_{5}=1$
$x_{1}-x_{2}+x_{3}+2 x_{4}-x_{5}=2$
$4 x_{1}-4 x_{2}+5 x_{3}+7 x_{4}-x_{5}=6$
h) $3 x_{1}-x_{2}+x_{3}-x_{4}+2 x_{5}=5$
$x_{1}-x_{2}-x_{3}-2 x_{4}-x_{5}=2$
$5 x_{1}-2 x_{2}+x_{3}-3 x_{4}+3 x_{5}=10$
$2 x_{1}-x_{2}-2 x_{4}+x_{5}=5$
i) $3 x_{1}-x_{2}+2 x_{3}+4 x_{4}+x_{5}=2$
$x_{1}-x_{2}+2 x_{3}+3 x_{4}+x_{5}=-1$
$2 x_{1}-3 x_{2}+6 x_{3}+9 x_{4}+4 x_{5}=-5$
$7 x_{1}-2 x_{2}+4 x_{3}+8 x_{4}+x_{5}=6$
j) $2 x_{1}+3 x_{3}-4 x_{5}=5$
$3 x_{1}-4 x_{2}+8 x_{3}+3 x_{4}=8$
$x_{1}-x_{2}+2 x_{3}+x_{4}-x_{5}=2$
$-2 x_{1}+5 x_{2}-9 x_{3}-3 x_{4}-5 x_{5}=-8$
3. Suppose that the augmented matrix of a system $A x=b$ is transformed into a matrix $\left(A^{\prime} \mid b^{\prime}\right)$ in reduced row echelon form by a finite sequence of elementary row operations.
(a) Prove that $\operatorname{rank}\left(A^{\prime}\right) \neq \operatorname{rank}\left(A^{\prime} \mid b^{\prime}\right)$ if and only if $\left(A^{\prime} \mid b^{\prime}\right)$ contains a row in which the only nonzero entry lies in the last column.
(b) Deduce that $A x=b$ is consistent if and only if $\left(A^{\prime} \mid b^{\prime}\right)$ contains no row in which the only nonzero entry lies in the last column.
4. For each of the systems that follow, apply Exercise 3 to determine whether the system is consistent. If the system is consistent, find all solutions. Finally, find a basis for the solution set of the corresponding homogeneous system.
a) $x_{1}+2 x_{2}-x_{3}+x_{4}=2$
b) $x_{1}+x_{2}-3 x_{3}+x_{4}=-2$
$2 x_{1}+x_{2}+x_{3}-x_{4}=3$
$x_{1}+x_{2}+x_{3}-x_{4}=2$
$x_{1}+2 x_{2}-3 x_{3}+2 x_{4}=2$
$x_{1}+x_{2}-x_{3}=0$

$$
\text { c) } \begin{aligned}
& x_{1}+x_{2}-3 x_{3}+x_{4}=1 \\
& x_{1}+x_{2}+x_{3}-x_{4}=2 \\
& x_{1}+x_{2}-x_{3}=0
\end{aligned}
$$

5. Let the reduced row echelon form of A be

$$
\left(\begin{array}{rrrrr}
1 & 0 & 2 & 0 & -2 \\
0 & 1 & -5 & 0 & -3 \\
0 & 0 & 0 & 1 & 6
\end{array}\right) .
$$

Determine A if the first, second, and fourth columns of A are

$$
\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right), \quad\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right),
$$

respectively.
6. Let the reduced row echelon form of A be

$$
\left(\begin{array}{rrrrrr}
1 & -3 & 0 & 4 & 0 & 5 \\
0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Determine A if the first, third, and sixth columns of A are

$$
\left(\begin{array}{r}
1 \\
-2 \\
-1 \\
3
\end{array}\right), \quad\left(\begin{array}{r}
-1 \\
1 \\
2 \\
-4
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{r}
3 \\
-9 \\
2 \\
5
\end{array}\right),
$$

respectively.
7. It can be shown that the vectors $u_{1}=(2,-3,1), u_{2}=(1,4,-2), u_{3}=(-8,12,-4), u_{4}=(1,37,-17)$, and $u_{5}=(-3,-5,8)$ generate \mathbb{R}^{3}. Find a subset of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ that is a basis for \mathbb{R}^{3}.
8. Let W denote the subspace of \mathbb{R}^{5} consisting of all vectors having coordinates that sum to zero. The vectors

$$
\begin{array}{ll}
u_{1}=(2,-3,4,-5,2), & u_{2}=(-6,9,-12,15,-6), \\
u_{3}=(3,-2,7,-9,1), & u_{4}=(2,-8,2,-2,6), \\
u_{5}=(-1,1,2,1,-3), & u_{6}=(0,-3,-18,9,12), \\
u_{7}=(1,0,-2,3,-2), \quad \text { and } & u_{8}=(2,-1,1,-9,7)
\end{array}
$$

generate W. Find a subset of $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ that is a basis for W.
9. Let W be the subspace of $M_{2 \times 2}(\mathbb{R})$ consisting of the symmetric 2×2 matrices. The set

$$
S=\left\{\left(\begin{array}{rr}
0 & -1 \\
-1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 1 \\
1 & 9
\end{array}\right),\left(\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right),\left(\begin{array}{rr}
-1 & 2 \\
2 & -1
\end{array}\right)\right\}
$$

generates W. Find a subset of S that is a basis for W.
10. Let

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{1}-2 x_{2}+3 x_{3}-x_{4}+2 x_{5}=0\right\} .
$$

(a) Show that $S=\{(0,1,1,1,0)\}$ is a linearly independent subset of V.
(b) Extend S to a basis for V.
11. Let V be as in Exercise 10.
(a) Show that $S=\{(1,2,1,0,0)\}$ is a linearly independent subset of V.
(b) Extend S to a basis for V.
12. Let V denote the set of all solutions to the system of linear equations

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{4}-3 x_{5}+x_{6}=0 \\
2 x_{1}-x_{2}-x_{3}+3 x_{4}-4 x_{5}+4 x_{6}=0 .
\end{array}
$$

(a) Show that $S=\{(0,-1,0,1,1,0),(1,0,1,1,1,0)\}$ is a linearly independent subset of V.
(b) Extend S to a basis for V.
13. Let V be as in Exercise 12.
(a) Show that $S=\{(1,0,1,1,1,0),(0,2,1,1,0,0)\}$ is a linearly independent subset of V.
(b) Extend S to a basis for V.
14. If $(A \mid b)$ is in reduced row echelon form, prove that A is also in reduced row echelon form.
15. Prove that the reduced row echelon form of a matrix is unique.

